If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25z^2-80+64=0
We add all the numbers together, and all the variables
25z^2-16=0
a = 25; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·25·(-16)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*25}=\frac{-40}{50} =-4/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*25}=\frac{40}{50} =4/5 $
| F(x)=9.50+0.25x | | 6-5m=m+24;-3 | | 4,5=4,5n | | 2(x)/(3)-x=((x)/(6))-((3)/(2)) | | 5a+4(165-a)=754 | | 6-4m=m+26;-24 | | h/2+ 16=20 | | 165+4x+5x=754 | | 6p^2-24p=0 | | 8x+6=4x^2-3 | | (q+3)=0 | | Z³+27i=0 | | 8Xy=13.5 | | 3q-1=-14 | | (3x-6)+6=3 | | 7x+2=5x8 | | 5(2x-2)+6=6 | | 5g=54 | | 3d=38 | | 4=(t)/(2,5) | | 3=(x)/(3,3) | | 15(x)=75 | | F(20)=11x+12 | | 6,4=8,0m | | 2x+6=-80 | | (1)/(4)=(y)/(12) | | 4a+3=a+30 | | 2=(f)/(8) | | (b)/(6)=3 | | (a)/(7)=9 | | Y=4x²+7x-19 | | 13x+55=180 |